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We consider the evaporation and subsequent burning of thin films of liquid fuels.
Previous studies on liquid films, with and without evaporation, have primarily con-
sidered the gas phase to be passive. The new element in this study is the introduction
of combustion and the examination of both the liquid and gas phases and their effect
on the film’s behaviour. For the case of a liquid film burning in quiescent air we
show that the problem can be simplified to a single nonlinear evolution equation
for the film thickness. All remaining variables, which are simply expressed in terms
of the function describing the instantaneous position of the liquid–vapour interface,
are subsequently determined. This equation is then solved in order to understand the
dynamics of the film in the presence of evaporation and combustion.

The planar configuration is discussed first. Predictions for the total evaporation
time are obtained, along with the time history of the film thickness, the interfacial
surface temperature, the flame standoff distance and its temperature, and the mass
burning rate. The dependence of the burning characteristics on the fuel and oxidizer
Lewis numbers, which measure the relative importance of thermal and molecular
diffusivities, is also determined. Second, we analyse the case of a non-planar interface,
where temperature variations along the film’s surface cause fluid motion in the liquid
that could either dampen or amplify spatial non-uniformities. We show that, while
thermocapillarity has the tendency to destabilize the planar interface, combustion acts
to reduce this effect. In particular, when the heat release by combustion is substantial,
all disturbances are obliterated, the film remains nearly planar and the burning occurs
along nearly horizontal surfaces.

1. Introduction
Thin liquid films play a substantial role in various scientific areas such as biology,

physics, chemistry and geology. In engineering applications, they serve as agents
for heat and mass transport and are common in lubrication systems. Our interest
stems from applications involving films of liquid fuels. An accidental spillage of a
flammable fluid can be a fire hazard. A leak of liquid fuel at high pressure in industrial
applications may produce a flow of burning liquid over solid surfaces, a situation
referred to as a ‘running liquid fire’ in the petrochemical industries. In combustion
devices where a liquid fuel jet is atomized into droplets, the development of thin
liquid films flowing along the relatively colder walls is often possible. Understanding
the burning characteristics of these films is essential for the overall control of the
combustion efficiency.
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Over the past few decades much work has been done on the stability of thin
liquid films with and without evaporation and in the presence of various effects
such as surface tension, vapour recoil and molecular forces as well as with the
presence of soluble and insoluble surface-active agents (cf. Oron, Davis & Bankoff
1997). A similar theoretical study which examines the combustion of thin films has
not been done. This investigation provides a general formulation for such studies.
Unlike most previous works where the gas-phase processes were considered passive,
our formulation accounts for the interaction between the liquid and the gas and
recognizes the fact that the dynamics could be profoundly influenced by interfacial
effects.

The burning of liquid fuels is a complex phenomenon; it is an unsteady process,
since as a result of vaporization the surface of the film recedes continually, and a
process that exhibits a strong coupling between the liquid and gas phases. The fuel
vapour produced as a result of evaporation can either burn as a ‘pool fire’, with
nearly uniform horizontal surfaces, or as a flame spreading along the surface of the
film (cf. Ross 1994). In this work we will be primarily concerned with a configuration
that is relevant to pool fires and, in particular, with the case of a liquid film burning
in quiescent air. Our formulation, however, is quite general, allowing for forced and
natural convection with more far-reaching applications.

The fluid dynamics in the liquid phase is simplified by exploiting the disparity
between the film thickness and the typically much larger transverse characteristic
length. Another key simplification is the assumption of a small gas-to-liquid density
ratio, a good approximation for most typical fuels. As a consequence, the film recedes
relatively slowly and the gas-phase processes are quasi-steady. In this study the fast
chemistry limit has also been considered with the burning occurring along a thin
diffusion flame located where the fuel vapour meets the oxidizer at stoichiometric
proportions. Incomplete combustion, including the possibility of extinction, could
be easily incorporated using more general jump relationships across the diffusion
flame surface (Cheatham & Matalon 2000). With these simplifications the problem
is systematically reduced to what amounts to boundary layer equations in the gas
phase and the lubrication approximation in the liquid phase. For the case of a liquid
film burning in quiescent air, the problem is further simplified to a single nonlinear
evolution equation that describes the local and instantaneous thickness of the film. All
remaining variables, which are simply expressed in terms of the function describing the
instantaneous position of the liquid–vapour interface, are subsequently determined.
Similarly to previous studies (Williams & Davis 1982; Burelbach, Bankoff & Davis
1988; Krishnamoorthy, Ramaswamy & Joo 1995; Oron et al. 1997) this equation
accounts for gravity and thermocapillary effects. However, it also depends on the
local surface temperature and on the mass flux leaving the surface of the film, two
quantities that are determined by the details of the gas-phase processes.

There are only few combustion-related studies that have some relation to the
present investigation. Sirignano & Glassman (1970) considered the surface-tension-
driven convective motion in a liquid pool and provided a solution that describes
the local deformation of the free surface. They considered the uncoupled system,
ignoring the gas-phase phenomena and the energy transfer from the gas to the liquid.
Their analysis, which extends that of Landau & Lifshitz (1959, p. 236) by introducing
a relative motion between the interface and the bottom surface of the pool, has
been interpreted in the context of the flame spread problem. Aharon & Shaw (1996)
carried out a linear stability analysis to determine the influence of thermal and
solutal Marangoni effects on an evaporating droplet. By adopting a quasi-steady
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Figure 1. Configuration of the problem.

approximation while neglecting gravity and surface deformation, a critical droplet
radius was identified above which an instability results. They concluded that, for
the conditions considered, thermocapillary effects have a stabilizing influence. The
correspondence of their finding to our results will be discussed later.

2. Formulation
A thin liquid layer lies on a solid surface located at y = 0 and is maintained at a

uniform temperature Tb. The film is laterally unbounded and consists of a combustible,
incompressible fluid of constant material properties. The liquid is evaporating at its
surface and the fuel vapour thus formed is burning in the gas phase with the ambient
oxidizer. The liquid–vapour interface is described by y = ϕ(x, t) where x is the lateral
coordinate and t is the time variable. Thus, unit normal and tangent vectors to the
interface are respectively given by

n =
(−∂ϕ/∂x, 1)√
1 + (∂ϕ/∂x)2

, t =
(1, ∂ϕ/∂x)√
1 + (∂ϕ/∂x)2

,

and the velocity of the interface along the normal is

VI =
∂ϕ/∂t√

1 + (∂ϕ/∂x)2
.

The chemical activity is modelled by an overall one-step chemical reaction of the
form

νF Fuel + νX oXidizer→ Products

where νi is the stoichiometric coefficient of species i and the subscripts F , X stand for
fuel and oxidizer, respectively. It is assumed that the fuel vapour burns to completion
within a finite ‘boundary layer’ of thickness H . The configuration is shown in figure 1.

We denote the velocity field by v, the temperature and density by T and ρ and the
mass fractions of fuel and oxidizer by Y and X, respectively. The accent ˆ identifies
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the variables in the liquid phase. Conservation of mass, momentum and energy in
each of the two phases are:

liquid phase

∇ · v̂ = 0, (2.1)

ρ
`

Dv̂

Dt
= ∇ · Σ̂ + ρ

`
g, (2.2)

ρ
`
cp

`

DT̂

Dt
− λ

`
∇2T̂ = 0; (2.3)

gas phase

∂ρ

∂t
+ ∇ · ρv = 0, (2.4)

ρ
Dv

Dt
= ∇ · Σ + ρg, (2.5)

ρcpg
DT

Dt
− λg∇2T = Qω, (2.6)

ρ
DY

Dt
− ρDF∇2Y = −νFWFω, (2.7)

ρ
DX

Dt
− ρDX∇2X = −νXWXω. (2.8)

In these equations D/Dt is the convective derivative, Σ̂ and Σ are the stress tensors,

given by Σ̂ = −p̂I+µ
`
(∇v̂ + ∇v̂T) in the liquid and Σ = −pI+µ{(∇v + ∇vT)− 2

3
(∇·v)I}

in the gas with the superscript T denoting the transpose, I a unit tensor and p̂, p the
pressure in the respective phases. The gravitational force (per unit mass) is denoted
by g and is acting downwards, in the negative y-direction. The liquid density ρ

`
is

taken as a constant, but the density of the gas ρ varies with temperature, as discussed
below. The coefficients cp` and λ

`
, which are both assumed constant, represent the

specific heat and thermal conductivity of the liquid. The liquid viscosity µ
`

typically
varies with temperature but, for simplicity, it will be treated here as a constant;
the implication of this assumption will be further discussed in the conclusions. The
specific heat and thermal conductivity of the gaseous mixture, cpg and λg , are also
taken as constant but the viscosity µ may be allowed to vary with temperature. The
molecular weight of species i is denoted by Wi and the molecular diffusivity Di is
assumed to vary with temperature such that ρDi is constant. The chemical reaction
rate obeys the Arrhenius law

ω = B
(
ρY

WF

)(
ρX

WX

)
e−E/R

oT (2.9)

where B is a pre-exponential factor, E is the overall activation energy and Ro is the
universal gas constant. The total chemical heat release is denoted by Q.

In writing these equations, the kinetic energy has been neglected, as was the rate
of dissipation of mechanical energy due to shear viscosity. Since the characteristic
gas-phase velocities are typically small compared to the speed of sound, the gas-phase
processes are considered nearly isobaric, with P ≈ P∞, the pressure in the ambient
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gas. The equation of state thus reduces to

ρT =
W̄

Ro
P∞ (2.10)

with W̄ , the average molecular weight of the mixture, taken as constant. The pressure
p appearing in Σ is the small pressure variation P −P∞, of the order of the square of
the representative Mach number.

The boundary conditions are

v̂ = 0, T̂ = Tb at y = 0, (2.11)

corresponding to the no-slip and isothermal conditions at the solid surface, and

T = T∞, ρ = ρ∞, X = X∞, Y = 0 at y = H, (2.12)

corresponding to the specified uniform state at the edge of the combustion layer. The
velocity field at y = H is also specified by the external flow.

At the interface, y = ϕ(x, t), the vapour–liquid jump conditions are as follows: The
overall mass balance is

ρ
`
(v̂ · n− VI ) = ρ(v · n− VI ) ≡ m, (2.13)

where m denotes the net mass flux across the interface. The mass balance for the fuel
and oxidizer are

mY − ρDF

∂Y

∂n
= mY

`
, (2.14)

mX − ρDX

∂X

∂n
= 0, (2.15)

where Y` is the fuel mass fraction in the liquid. The balance of normal stress is

m(v̂ − v) · n− n · (Σ̂ − Σ) · n = σ∇ · n, (2.16)

where ∇ · n is twice the mean curvature and σ is the surface tension. The balance of
shear stress is

m(v̂ − v) · t − t·(Σ̂ − Σ) · n = −t · ∇σ. (2.17)

The balance of energy is

λg
∂T

∂n
− λ

`

∂T̂

∂n
= mLv, (2.18)

where Lv is the latent heat of vaporization. Finally, no slip at the interface between
the two fluids

(v̂ − v) · t = 0, (2.19)

and continuity in temperature at the interface T = T̂ must be applied.
The Clausius–Clapeyron condition that relates the partial pressure of the fuel

vapour to the temperature in the vicinity of the interface is expressed as

Y P∞
WF/W̄

= Po exp

{
− Lv

Ro/WF

(
1

T
− 1

TB

)}
, (2.20)

where TB is the boiling temperature evaluated at the reference pressure Po. The
surface tension σ is assumed to depend linearly on the temperature, namely

σ = σ0 − γ(T̂ − T∞), (2.21)
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Methanol Ethanol Hexane Octane Air

ρl [kg m−3] 791 789 660 703 —
ρg [kg m−3] — — — — 1.23

µl [kg m−1 s−1] 0.6× 10−3 1.2× 10−3 0.3× 10−3 0.5 ×10−3 —
µg [kg m−1 s−1] 1.0× 10−5 0.9× 10−5 0.7× 10−5 0.5× 10−5 1.8× 10−5

Table 1. Density and viscosity of representative liquid fuels and air at 300 K.

where σ0 is evaluated at the reference state T = T∞. For most common liquids, the
gradient γ = −dσ/dT > 0.

3. Scaling and non-dimensionalization
A key simplification in scaling the governing equations is the assumption that

transverse variations along the film occur on a much larger scale than the scale h that
characterizes the film thickness. In other words, a long-wavelength approximation is
adopted so that, if the vertical dimension is scaled with respect to the initial film
thickness h, the horizontal coordinate is scaled with respect to h/ε, with the aspect
ratio ε� 1. The horizontal velocity component in the liquid phase is scaled using the
ratio of the viscous diffusivity to the characteristic length, namely using µ

`
ε/ρ

`
h as a

unit. Time is non-dimensionalized accordingly, with respect to ρ
`
h2/µ

`
ε2. In scaling

the horizontal velocity component in the gas phase we use the thermal diffusivity of
the mixture Dth = λg/ρgcpg instead of the viscous diffusivity, so that Dth/hε is used
as a unit. The characteristic density ρg was chosen as the density of the ambient
gas, namely ρg = ρ∞. In order to conserve mass v̂/û and v/u must both be O(ε) so
that the vertical velocity components are scaled accordingly. Consistent with these
choices, the net mass flux m leaving the surface of the film is made dimensionless with
respect to λg/hcpg . The temperature is scaled with respect to the ambient temperature
T∞, and the characteristic viscosity is taken to be that of the ambient gas, namely
µg = µ∞. The pressure in the liquid and gas phases is respectively referred to µ2

`
/ρ

`
h2

and ρgD2
th/h

2ε2. Finally, the fuel and oxidizer mass fractions are both scaled with
respect to Y`.

Another key assumption used in the analysis is the realization that the gas-to-
liquid density and viscosity ratios are small. Typical values for representative alcohol
and hydrocarbon fuels are shown in table 1 and with the characteristic density and
viscosity of the gaseous mixture ρg and µg determined mostly by the properties
of air, we see that the ratios ρg/ρ` ≈ 10−3 and µg/µ` ≈ 10−2. We thus consider the
distinguished limit ρg/ρ` = ε2 and consequently write µg/µ` ∼ ε2, allowing here for
an O(1) proportionally constant. The ratio of thermal conductivities, λg/λ` is treated
as O(1).

We note that it may have been more appropriate to scale the equations using
the evaporative time scale D−1

th h
2(ρ

`
/ρg), which represents the time that it takes for

a film of thickness h with a planar interface to evaporate completely (see § 5). It
is, however, equivalent in magnitude to the viscous time scale we have chosen for
non-dimensionalization, their ratio being

α ≡ µg/ρg

µ`/ρ`
P r = O(1),
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where Pr = µgcpg/λg is the gas-phase Prandtl number. The choice we have adopted
was made so that the resulting evolution equation resembles in form those appearing
in previous thin-film studies (cf. Oron et al. 1997).

The dimensionless governing equations and boundary conditions, after taking the
limit ε→ 0, become (the same symbols are used below for the dimensionless quantities
as well):

liquid phase

∂û

∂x
+
∂v̂

∂y
= 0, (3.1)

∂p̂

∂y
+ G = 0,

∂p̂

∂x
=
∂2û

∂y2
, (3.2)

∂2T̂

∂y2
= 0; (3.3)

gas phase

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0, (3.4)

∂p

∂y
= 0, ρu

∂u

∂x
+ ρv

∂u

∂y
= −∂p

∂x
+ Pr

∂

∂y

(
µ
∂u

∂y

)
, (3.5)

ρu
∂T

∂x
+ ρv

∂T

∂y
− ∂2T

∂y2
= qω, (3.6)

ρu
∂Y

∂x
+ ρv

∂Y

∂y
− L−1

F

∂2Y

∂y2
= −ω, (3.7)

ρu
∂X

∂x
+ ρv

∂X

∂y
− L−1

X

∂2X

∂y2
= −νω, (3.8)

ω = Dρ2XY e−E/T , ρT = 1;

boundary conditions

û = v̂ = 0, T̂ = Tb at y = 0, (3.9)

T = 1, Y = 0, X = X∞ at y = H; (3.10)

liquid–gas interfacial conditions, at y = ϕ(x, t)

m ≡ ρ
(
−u∂ϕ

∂x
+ v

)
, −û ∂ϕ

∂x
+ v̂ − ∂ϕ

∂t
= αm, (3.11)

u = 0, (3.12)

p̂− α2p = −3S
∂2ϕ

∂x2
, (3.13)

−∂û
∂y

+ α2

(
Prµ

∂u

∂y
+ mu

)
= 2M

(
∂T̂

∂x
+
∂ϕ

∂x

∂T̂

∂y

)
, (3.14)

λ−1 ∂T̂

∂y
− ∂T

∂y
= −mL, (3.15)
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L−1
F

∂Y

∂y
= m(Y − 1), L−1

X

∂X

∂y
= mX, (3.16)

Y = Ke−A/T . (3.17)

The scaling we have adopted yields, in the liquid phase, equations that are consistent
with lubrication theory, and in the gas phase the boundary layer equations.

Several parameters appear in equations (3.1)–(3.17). The gas-phase Prandtl num-
ber Pr, which has been defined earlier, represents the ratio of viscous to thermal
diffusivities. The fuel and oxidizer Lewis numbers,

LF = Dth/DF , LX = Dth/DX,

represent the ratio of the thermal diffusivity of the mixture to the mass diffusivities of
fuel or oxidizer, respectively. Although Lewis numbers are typically near one, small
variations above or below one are known to have significant effects on combustion
processes. Such variations could result either because of different mobility of the fuels
considered or because of the existence of an abundant inert in the gas phase that
could alter the average thermal diffusivity. Heavier fuels such as hydrocarbons, for
example, have a larger value of LF than alcohols and, the value of LX could be
reduced by diluting the ambient with CO2, say, because of its larger heat capacity.
The heat release parameter q, and the related parameter q′ are given by

q = (Q/cpg T∞)(Y
`
/νFWF ), q′ = qX∞/ν,

with ν = νXWX/νFWF the mass-weighted stoichiometric coefficient. In the parametric
study presented below the parameter q′ is found to be more useful; it represents the
ratio of the energy liberated per unit mass of available oxidizer to the total energy in
the ambient gas. The latent heat parameter L is given by L = Lv/cpgT∞. The surface
tension parameter and Marangoni number,

S = σ0ρ`hε
2/3µ2

`
, M = γhT∞ρ`/2µ

2
`
,

measure the level of surface tension and its gradient, respectively; they will be further
discussed below. The reciprocal of the Froude number

G = ρ2
`
h3|g|/µ2

`

measures the importance of gravity relative to inertia effects. The Damköhler number

D = νFρgY`h
2B/WXDth

is the ratio of the diffusion time to the chemical reaction time and is typically large
suggesting that the chemical reaction rate is relatively fast. The activation energy
parameter E = E/RoT∞ measures the sensitivity of the chemical reaction rate to
temperature. Finally, the equilibrium coefficients

K =
(Po/P∞)W̄

Y`WF

exp

[
Lv

RoTB/WF

]
, A =

Lv

RoT∞/WF

appear from scaling the Clausius–Clapeyron relation. With the exception of the
Damköhler number D, all the parameters will be treated as O(1) quantities.



Evaporation and combustion of thin films of liquid fuels 359

4. Evolution equation
4.1. The gas phase

Although the mathematical formulation given above allows for a general external
flow, we shall be concerned here with the special case in which the ambient gas is
quiescent. This assumption, together with the requirement (3.12) imply that u ≡ 0
and, consequently, p = 0. The fuel vapour emanating from the surface of the film is
transported everywhere vertically with a mass flow rate m = ρv that depends on the
transverse coordinate and on time.

As noted earlier, the Damköhler number D is typically large. In the limit D → ∞,
known as the Burke–Schumann limit (Burke & Schumann 1928), the chemical reaction
proceeds very fast so that fuel and oxidizer cannot co-exist. Complete combustion
occurs along a reaction sheet, located at y = yf(x, t) say, where the fuel and oxidizer
meet at stoichiometric proportions. This condition, which can be expressed as jump
relationships across the sheet (cf. Cheatham & Matalon 2000)

[T ]
y+
f

y−
f

= [Y ]
y+
f

y−
f

= [X]
y+
f

y−
f

= 0, (4.1)

1

q

[
∂T

∂y

]y+
f

y−f

= − 1

LF

[
∂Y

∂y

]y+
f

y−f

= − 1

νLX

[
∂X

∂y

]y+
f

y−f

, (4.2)

together with the requirements

Y |y+
f

= 0, X|y−
f

= 0, (4.3)

are sufficient to determine the combustion field as well as the instantaneous location
of the reaction sheet. To this end one needs to solve the transport equations

m
∂T

∂y
− ∂2T

∂y2
= 0,

m
∂Y

∂y
− L−1

F

∂2Y

∂y2
= 0, m

∂X

∂y
− L−1

X

∂2X

∂y2
= 0

on either side of the reaction sheet subject to (4.1)–(4.3) and the boundary conditions
(3.10) and (3.16). One finds

Y =

 1− e−mLF (yf−y), y < yf

0, y > yf,

X =


0, y < yf

X∞
emLX (y−yf ) − 1

emLX (H−yf ) − 1
, y > yf,

T =


Ts +

{
1− Ts + q[em(H−yf ) − 1]

} emy − emϕ

emH − emϕ
, y < yf

1 +
{
Ts − 1 + q[1− e−m(yf−H)]

} emH − emy

emH − emϕ
, y > yf,

where Ts denotes the (surface) temperature at the interface that remains to be
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determined. The location of the reaction sheet is given by

yf = H − 1

m
ln[(1 + ν−1X∞)1/LX ] (4.4)

and the flame temperature Tf is obtained by evaluating T at y = yf .
The only coupling between the liquid and gas phases remains in the mass and

energy balances (3.11) and (3.15) and the Clausius–Clapeyron equation (3.17).

4.2. The liquid phase

The temperature in the film is easily obtained by integrating (3.3), leading to

T = Tb + (Ts − Tb) y
ϕ
.

Integrating the momentum equations (3.2) and applying the conditions (3.9) and
(3.13)–(3.14) one finds

p̂ = −3S
∂2ϕ

∂x2
+ G(ϕ− y),

û = E1y
2 + E2y, v̂ = −

(
∂E1

∂x

)
y3

3
−
(
∂E2

∂x

)
y2

2
,

where

E1 =
1

2
G
∂ϕ

∂x
− 3

2
S
∂3ϕ

∂x3
, E2 = 3Sϕ

∂3ϕ

∂x3
− 2M

∂Ts

∂x
− Gϕ∂ϕ

∂x
.

At this stage the velocity and pressure fields are completely determined in terms of
the yet unknown function ϕ(x, t).

4.3. Interfacial conditions

When the kinematic condition (3.11) is applied at the liquid–gas interface and use is
made of the solutions in the gas and liquid phases, one finds

∂ϕ

∂t
= −S ∂

∂x

(
ϕ3 ∂

3ϕ

∂x3

)
+M

∂

∂x

(
∂Ts

∂x
ϕ2

)
+

1

3
G
∂

∂x

(
ϕ3 ∂ϕ

∂x

)
− αm (4.5)

with m and Ts obtained from

m =
L−1
F

H − ϕ ln

{
(1 + ν−1X∞)LF/LX

1−Ke−A/Ts

}
, (4.6)

1− Ts + q[(1 + ν−1X∞)1/LX − 1]

em(H−ϕ) − 1
− λ−1Ts − Tb

mϕ
= L, (4.7)

which follow from applying conditions (3.15) and (3.17). The problem thus reduces to a
single nonlinear partial differential equation (4.5) for the unknown ϕ(x, t). It should be
noted that equation (4.6) implies that Ts must satisfy the inequality K exp (−A/Ts) < 1
which, in dimensional form, simply states that the surface temperature must be below
the boiling temperature TB .

5. Planar interface
The planar interface, which we shall denote here by y = η(t) for convenience,

recedes at a rate
dη

dt
= −αm (5.1)
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starting from the initial value η(0) = 1 to the disappearance of the film at t = tE . Of
primary interest is to determine the total evaporation time tE , the surface temperature
Ts, the evaporation or burning rate m and the flame standoff distance and temperature
yf and Tf , respectively.

5.1. Isothermal film

It is instructive to consider first the special case of an isothermal film. The temperature
in the liquid is constant and remains equal to Tb at all times, so that Ts = Tb. This
condition replaces the surface equilibrium condition (4.6) which must therefore be
abandoned. Substituting in (4.7) and solving for m one obtains

m =
ln (1 + B)

H − η , (5.2)

where

B =
1

L
{1− Tb + q[(1 + ν−1X∞)1/LX − 1]} (5.3)

is the conventional transfer number (Spalding 1952). The numerator of (5.3) consists
of the difference in enthalpy between the ambient and the interface added to the heat
released by the chemical reaction. Thus B is the ratio of the added energy which
enhances the transfer to the latent heat of vaporization resisting the transfer. In the
absence of combustion B = (1 − Tb)/L, which is the transfer number for the pure
vaporization case. Equation (5.1), with m given by (5.2), can now be integrated to give

η = H −√(H − 1)2 + 2α ln (1 + B)t

from which the total time for film evaporation can be deduced by setting η = 0,
giving

tE =
2H − 1

2α ln (1 + B)
. (5.4)

Clearly tE > 0 sinceH > 1. Furthermore, tE increases with increasing L and decreasing
q. By rewriting (5.4) in dimensional form it is readily seen that the characteristic
evaporation time is indeed D−1

th h
2(ρ

`
/ρg), which is the unit of time we have chosen

in scaling the equations divided by α. As noted earlier the factor α was introduced
for convenience and has no particular physical meaning; it is used below as a scaling
factor to enhance graph visualization. With m and B known, one obtains for the flame
position and temperature

yf = H − (H − η)
ln [(1 + ν−1X∞)1/LX ]

ln[1 + B]
(5.5)

and

Tf = Tb + L

[
1 + B

(1 + ν−1X∞)1/LX
− 1

]
. (5.6)

The flame temperature remains constant at all times. The flame position varies in
time in a similar way as η; its initial position depends on the oxidizer concentration
or mixture strength.

The results presented above are independent of the fuel Lewis number LF which,
as we shall see, is a consequence of the isothermal assumption. There is, however, an
explicit dependence on the oxidizer Lewis number LX; increasing LX , for example by
appropriately diluting the ambient gas, causes a decrease in B and therefore in the
burning rate, thus extending the evaporation time tE .
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Since for an isothermal film all the heat available for evaporation is provided from
the gas phase, an increase in the ambient temperature results in faster evaporation.
Thus a decrease in Tb, the ratio of the film to the ambient temperature, causes an
increase in B which produces a larger value of m and a shorter evaporation time tE .
Consistent with that we find that the flame temperature Tf decreases and the flame
moves away from the film surface.

5.2. Variable-temperature film

When there is a variation in temperature throughout the film, the surface temperature
Ts is an unknown that must be determined along with m and η from equations (4.6)–
(4.7) and (5.1). We can write for the mass burning rate, similarly to (5.2), an expression
of the form

m =
ln (1 + Beff)

H − η
except that now it depends on an ‘effective transfer number’ given by

Beff =
(1 + ν−1X∞)1/L

X

(1−Ke−A/Ts)1/LF
− 1.

The surface temperature is determined from

1− Ts + q[(1 + ν−1X∞)1/LX − 1]

Beff

− λ−1Ts − Tb
mη

= L.

As before Beff represents the impetus to resistance of heat transfer, but because the
resistance to the transfer depends on the local equilibrium, it is a function of time.
For an isothermal film, obtained formally by taking the limit λ→∞, we see that Beff

reduces to the conventional transfer number B. Because of the transcendental nature
of these relations, solutions are sought numerically. The results are shown in figures 2
and 3 where the dependence of η and Ts is plotted against time for different values of
q′ which, as noted earlier, is the more relevant parameter. The calculations reported
are based on the following parameter values which are representative of alcohol and
hydrocarbon fuels burning in air:

λ = 0.2, µ = 2, ν−1X∞ = 0.067, H = 6,

L = 1.3, A = 20, K = 6× 105, Tb = 1.3,

LF = 1, LX = 1, P r = 0.7.

 (5.7)

Based on the value of µ and Pr, the factor α = 28.5. The pure vaporization case
is denoted by PV and has the longest evaporation time. The dependence of η on t,
which is close to being linear for the pure vaporization case, becomes significantly
nonlinear as q′ increases.

For the pure vaporization case the surface of the film receives heat only from the
hotter liquid below it. As the surface recedes, it heats up reaching Tb as t→ tE . The
surface temperature thus increases in time during the whole process. With sufficient
combustion, however, this trend is reversed and the slope of Ts changes from positive
to negative. The surface is now being heated mostly from above and cools off as
it recedes, approaching Tb as t → tE . Since Ts can be significantly higher in this
case, the evaporation time tE is much shorter. The dependence of tE on q′ is shown
in figure 4 along with the equivalent result for the case of an isothermal film. The
evaporation times for the constant-temperature film are much smaller, as expected,
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Figure 2. The position of the planar interface η as a function of time for various values of the
heat release parameter q′. Here PV corresponds to the case of pure vaporization.
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Figure 3. The surface temperature of the planar interface Ts as a function of time for various
values of the heat release parameter q′. Here PV corresponds to the case of pure vaporization.

because by replacing the Clausius–Clapeyron equilibrium condition with a constant
Ts, it is implied that the surface temperature is at or near the boiling temperature.

Unlike the constant-temperature case, the results here depend on both Lewis
numbers LF and LX . It is found that as LF increases, the flame moves closer to
the film thereby increasing its surface temperature. The film, however, evaporates
slower because of the decrease in the fuel–vapour mobility. Increasing LX also causes
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Figure 4. Evaporation time of a planar interface as a function of the heat release parameter q′.
Time in the ordinate has been scaled with respect to the evaporation time for pure vaporization.

a slower evaporation of the film, as we found earlier. As a result of the reduced
mobility of the oxidizer, the flame is located further away from the surface. This
causes a reduction in heat flux to the surface and a slower evaporation process.

6. Spatially varying film
When the interface is no longer planar, gravity and surface tension play a significant

role in the dynamics, as is evident from the evolution equation (4.5). In the following we
shall consider in turn the response of the system to small disturbances, which permits
linearizing the equation about the mean planar interface, and to finite disturbances
where nonlinear effects become important.

6.1. Linear stability

We shall refer to the planar interface y = η(t) discussed in the previous section as
the basic state. At time t = 0 the surface of the film is slightly disturbed such that
ϕ(x, 0) = 1 + ψ0e

ikx with k the transverse wavenumber of the disturbance and ψ0 its
amplitude. The disturbance is first assumed small so that |ψ0| � 1. We thus seek
solutions of the form ϕ(x, t) = η(t) +ψ(t)eikx, substitute into equations (4.5)–(4.7) and
linearize about the mean position, to obtain

1

ψ

dψ

dt
= −[b1(t)k

4 + b2(t)k
2 + b3(t)], (6.1)

where

b1 = Sη3,

b2 = M
H(T̄s − Tb)
C1 + C2

η2 + 1
3
Gη3,

b3 = α

{
ln (1 + Beff)

(H − η)2
+ δ

H(T̄s − Tb)
C1 + C2

}
.
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Here T̄s denotes the surface temperature of the basic state, and

δ =
L−1
F AKe−A/T̄s

T̄ 2
s (1−Ke−A/T̄s)

,

C1 =
λη2 ln (1 + Beff)

Beff

{
1 +

δBeff

1 + Beff

[
1 + q(1 + ν−1X∞)1/LX − q − T̄s]} ,

C2 = η(H − η)

{
1− δ T̄s − Tb

ln (1 + Beff)

}
.

The basic state is considered stable, for a given k, if ψ(t) is a monotonic decreasing
function; it is considered unstable if ψ(t) is a monotonic increasing function. In
some instances, however, the amplitude of a disturbance starts decreasing, reaches a
minimum value and then increases until the film’s disappearance at t = tE . In such
a case we shall identify the state corresponding to dψ/dt = 0 as the marginal state
and the corresponding time, t = t∗, as the time of the onset of instability. Although
this definition is somewhat arbitrary, because the disturbance may not grow in the
remaining time to a sufficient size, it nevertheless represent the time when a significant
change may occur in the film’s evolution.

For an isothermal film, T̄s = Tb and Beff is replaced by the conventional transfer
number B given by (5.3). The coefficients b1, b2, b3 simplify significantly and equation
(6.1) can be integrated exactly to yield

ψ(η) = ψ0

H − 1

H − η exp

{
−αSk

4 + 1
3
Gk2

ln (1 + B)

[
H

4
(1− η4)− 1

5
(1− η5)

]}
. (6.2)

Since at all times, η < 1, we conclude that all disturbances decay in time. Hence,
surface tension and gravity have a stabilizing influence on the evaporating film and
any small disturbance of the surface decays in time. The absence of the Marangoni
term is clearly a consequence of the constant surface temperature assumption.

For the general case, there are temperature variations along the film’s interface
and equation (6.1) cannot be simply integrated. Furthermore, since the coefficients bi
are time dependent, the range of the growing (unstable) modes changes in time. We
will therefore identify the ‘domain of instability’ in the parameter space as the largest
possible region of instability, namely conditions associated with the film becoming
unstable at some time during the period 0 < t < tE . In order to determine the domain
of instability we make use of the fact that the right-hand side of (6.1) is quadratic
in k2 and that the marginal states are the roots of this quadratic. Since b1 > 0, the
parabola is always concave down indicating that the unstable modes, at any given
time, are limited to a finite range of wavenumbers. Unstable modes exist only when
b2

2/4b1 − b3 > 0. The range of wavenumbers is then limited to k2−(t) < k2 < k2
+(t),

where k2− and k2
+ are the two positive roots of the quadratic; when the smallest root

is negative, we set k2− = 0. For a given set of parameters the largest and smallest
values of k2±, produced throughout the entire time interval 0 < t < tE , will be used
to mark the boundary between stable and unstable states. The region of instability,
therefore, represents the wavenumbers that are likely to grow at some time during
the process, before complete evaporation occurs. The wavenumber corresponding to
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Figure 5. Neutral stability curves showing the dependence of the wavenumber k2 on the heat release
parameter q′ in the absence of gravity (G = 0). Note that since the instability domain is changing
in time what is being presented is the largest possible region of instability. The area to the left of
the curves corresponds to unstable states. The dashed curves in each of the four graphs correspond
to the same parameter values. We show the effect of varying: (a) the Marangoni number M, (b) the
bottom temperature Tb, (c) the surface tension level S , and (d) the latent heat L.

the most rapidly growing mode is

k
max

=

 [−b2/2b1]
1/2, b2 < 0

0, b2 > 0.
(6.3)

In figure 5 we have plotted curves of marginal stability showing the range of
unstable modes (those to the left of the curve) as a function of q′ while varying
one of the four other parameters: the surface tension S , the Marangoni number
M, the ratio of the bottom of the film to the ambient temperatures Tb, and the
latent heat L. This figure corresponds to the case G = 0, namely in the absence
of gravity. Note that the dashed curves in each of the four plots represent the
same curve. The results clearly indicate that the range of unstable modes is wider
when M,L or Tb is increased, but is reduced when the level of surface tension S is
increased. Heat release by combustion acts always as a stabilizing factor as is evident
from all plots when q′ is sufficiently large. The main mechanism for instability is
clearly related to thermocapillary or Marangoni effects. Its destabilizing nature can
be explained by examining the response of a small disturbance to an otherwise planar
interface. Consider first the case of pure vaporization, namely q′ = 0. A depression
in the liquid–gas interface lies in a region that is hotter than its neighbours since
Tb > 1. Since surface tension is a decreasing function of temperature (see equation



Evaporation and combustion of thin films of liquid fuels 367

q′

0

8

10

k2

0.05 0.10 0.15 0.20

0.1

0.5

1

S = 0.01

L = 2
Tb = 1.3
M = 15
G = 1

6

4

2

Figure 6. Neutral stability curves, similar to the one presented in figure 5(d), but in the presence
of gravity (G = 1).

(2.21)) interfacial stresses drive liquid along the surface away from the depression
and towards the crests. As the liquid near the surface is dragged along by viscous
forces, the depression deepens further. Gravity and capillary forces cannot prevent this
deepening and the film’s thickness continues to decrease locally until it ruptures. In
the presence of combustion the heat released in the gas phase is partially transported
towards the interface. If the net heat flux at the interface is directed towards it, which
would be the case when q′ is sufficiently large, the intruding segments of the disturbed
interface would lie in regions that are hotter than their neighbours. The flow of
liquid near the interface is now directed towards the depressions, thus stabilizing the
film. While heat release and thermocapillary effects are of primary importance in
stabilizing/destabilizing the film, the role of the remaining parameters is to amplify
or diminish these effects. Thus, for example, when Tb increases, the temperature
difference between the depressed segments of the interface and their neighbours is
also increased, thus enhancing the destabilizing mechanism. Similarly an increase in
the latent heat L, which increases the resistance to heat transfer from the gas phase,
reduces the stabilizing mechanism. Capillary forces, however, always act to stabilize
the film.

As mentioned in the introduction Aharon & Shaw (1996) have examined the effects
of thermocapillarity on the stability of an evaporating droplet. Although their results
seem at first to contradict ours, a closer examination shows that this is not the case.
In their configuration, the net flux of heat to the droplet’s surface is always directed
from the hot surrounding gas phase, a situation which is equivalent to ours when q is
sufficiently large. Their conclusion, therefore, that Marangoni effects enhance stability
is consistent with ours.

Figure 6 is similar to figure 5(d), except that now G = 1. Gravity here is the
dominant effect and is clearly a stabilizing mechanism. Note that the critical q′ for
stability is reduced significantly compared to the case when G = 0.
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6.2. Nonlinear dynamics

To examine the evolution of the interface resulting from a finite-amplitude disturbance,
the nonlinear partial differential equation (4.5) has been solved numerically on a closed
interval with periodic boundary conditions. The integration proceeds from an initial
state, corresponding to the one that is likely to grow the fastest based on the linear
stability results, until rupture. Rupture is defined when one point of the interface
touches the bottom y = 0, and the ‘rupture time’ is the time it takes to reach that
state. Fourth-order central differencing was used to compute the spatial derivatives.
The time marching was accomplished by using the Netlib routine LSODA (Petzold &
Hindmarsh 1987). This set of routines is a robust package which uses the information
available at the end of each time step of the integration for making a decision as to
which method to use and, accordingly, switches between stiff and non-stiff methods
utilizing adaptive time steps to move forward or backward in time. In the worst case,
for a very stiff system, the time marching is second order; but since at each time
step the system is being re-evaluated, typically higher-order schemes are being used
(Petzold 1983). A spatial grid refinement was used to determine the optimum number
of grid points needed to obtain sufficiently smooth solutions. This was accomplished
by increasing the number of grid points until the time to rupture no longer changed.
In some cases an accurate rupture time could be found with a grid as low as n = 40,
but it produced solutions which did not appear sufficiently smooth. With n = 100 the
coarseness was significantly eliminated and the solutions were acceptable. However,
due to the changing nature of k

max
, the wavenumber associated with the fastest growing

mode, a grid of n = 100 was not always sufficient to produce smooth curves. For
example, coarse results were obtained at some instances when k

max
was small. Because

of this, the solutions depicted below utilize n = 400 ensuring smooth solutions with
reliable rupture times for all values of k

max
considered here.

The computations reported below use, for the most part, the parameter values
listed in (5.7). A few exceptions were made in an attempt to demonstrate the different
physical effects and to examine the interaction between various terms in the equation.
We have fixed the domain of integration to ` so that 0 < x < `, and considered
periodic boundary conditions:

ϕ(0, t) = ϕ(`, t),
∂ϕ

∂x
(0, t) =

∂ϕ

∂x
(`, t),

∂2ϕ

∂x2
(0, t) =

∂2ϕ

∂x2
(`, t),

∂3ϕ

∂x3
(0, t) =

∂3ϕ

∂x3
(`, t).

In order to examine the solution over one wavelength, regardless of the value of the
wavenumber k, we rescale the domain of integration by writing x′ = (2π/k)(x/`).
Then 0 < x′ < 2π/k and the parameters appearing in the evolution equation are
modified to

S ′ =
16π4

`4

σ0ρ`h

3µ2
`

ε2, M ′ =
4π2

`2

γT∞hρ`
2µ2

`

, G′ =
4π2

`2

gh

µ2
`/ρ

2
`h

2
.

In the graphs reported below we have chosen S ′ = 0.01,M ′ = 10 and G′ = 0, 1 or 5.
The initial condition

ϕ(x, 0) = 1− 0.1 cos(ko
max
x) (6.4)

was used, with ko
max

the maximizing wavenumber from linear theory at t = 0 (see
equation (6.3)). The initial velocity and temperature profiles were taken to be the
solutions corresponding to the choice of ϕ given in § 4.
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Figure 7. Profiles (from bottom to top) of film thickness, flame-sheet position, surface temperature,
flame temperature and burning rate showing the spatial variations for consecutive times. The dashed
curves in each case represents the initial profile. Graphs (a) correspond to an unstable case with
q′ = 0.06; (b) correspond to a stable case with q′ = 3. Calculated for the parameter values used in
(5.7) with S ′ = 0.01, M ′ = 10 and G′ = 0.

The results are summarized in figures 7 and 9–11 where we have plotted over
one period, from bottom to top, the shape of the interface ϕ, the flame position yf ,
the surface temperature Ts, the flame temperature Tf and the mass burning rate m.
The profiles are shown for consecutive times, for fixed intervals spanning the domain
0 6 t < tE . The initial condition is denoted in all the figures by dashed curves.

Figure 7(a) corresponds to q′ = 0.06 and illustrates the nonlinear development of
an unstable basic state. In this case the film is heated from below (Tb = 1.3) and
the ambient gas is relatively cold (Tf ≈ 1.15). Although combustion is complete as
a result of the assumed high Damköhler number, the diffusion flame is sitting far
from the surface. It is located at yf ≈ 4 where the edge of the combustion layer
is at H = 6. Thus, the surface of the film gains heat primarily from the hot liquid
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Figure 8. The dependence of the amplitude of the disturbed interface on time for various values
of the heat release parameter q′. Calculated for the parameter values used in (5.7) with S ′ = 0.01,
M ′ = 10 and G′ = 0.

beneath it so that the surface temperature Ts is higher where the film is thinner and
lower at the protruding sections. As discussed above, thermocapillary forces drive the
liquid near the interface away from the depressed regions and towards the crests,
thus feeding the growth of the initial perturbation. In contrast, a stable situation
is illustrated in figure 7(b) corresponding to a moderate q′ = 3. Here the flame
temperature (Tf ≈ 3 − 4) is higher than the surface temperature (Ts ≈ 1.3) so that
the film gains heat primarily from the gas above it. The surface temperature is thus
higher at the crests and thermocapillary forces, which now drive the liquid near the
interface towards the depressed regions, act to stabilize the film. The amplitude of the
initial perturbation decays in time and the film becomes nearly planar as it continues
to recede until t = tE .

In figure 8 we show the time history of the amplitude of the film’s interface for
selected values of q′ including the two values corresponding to figure 7. The amplitude
at time t is defined as half the difference between the highest and lowest points of
ϕ(x, t). For q′ = 0.06 the amplitude grows in time during the whole lifetime of the film,
a situation which is clearly unstable. On increasing q′ the rate of growth diminishes
and for q′ = 0.6 the amplitude decays for all time; a clearly stable configuration. We
have also added in the figure a curve corresponding to the pure vaporization case
(q′ = 0) which is the most unstable scenario. Note that for a stable configuration,
the ending time is approximately equal to the total evaporation time tE of the basic
state; it decreases with increasing q′ as seen previously in figure 4. For an unstable
configuration, however, the ending time appears to decrease with decreasing q′. This
behaviour is attributed to the fact that, as the initial perturbation grows, the film
ruptures first at one point and this occurs at a time t < tE . The more unstable the
interface is the shorter the time to rupture.

Figure 9 shows results corresponding to the same conditions as for the unstable
situation depicted in figure 7(a) but in the presence of gravity. It is interesting to
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Figure 9. Similar to figure 7(a) with q′ = 0.06, but in the presence of gravity:
(a) corresponds to G′ = 1 and (b) to G′ = 5.

note that, although the surface temperature is higher at the depressed segments
of the film and lowest at the crests, thermocapillary effects are not sufficient to
promote instability; they are suppressed by gravitational forces. Although in both
cases gravity is a dominant effect, the film never reaches a planar shape during the
finite time interval 0 < t < tE when G′ = 1, unlike when G′ = 5.

In figures 10 and 11 we show the effect of varying the Lewis numbers on the film
dynamics, for unstable situations. Comparing the profiles in figure 10 we see that
when LF < 1, corresponding to a higher mass diffusivity of fuel, there is an increase in
the mass loss from the film (increasing m) and consequently the flame stands further
away from the film. Being closer to the ambient the flame temperature is lower, which
explains the more unstable behaviour of the film in this case, compared to the case
when LF > 1 (see also figure 12). Comparing the profiles in figure 11 we see that, as
a result of an increase in the oxidizer diffusivity, the flame stands closer to the film
when LX < 1 as opposed to when LX > 1. Consequently the flame temperature is
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Figure 10. Similar to figure 7(a) with q′ = 0.06, but with non-unity fuel Lewis numbers:
(a) corresponds to LF = 1.2 and (b) to LF = 0.8.

higher and, since the surface of the film gains more heat from the gas phase, it is
more stable (see also figure 12). Finally, one observes from figure 12 that despite the
opposing trends regarding stability, increasing either LF or LX leads to an increase in
the total evaporation time tE .

7. Conclusions
In this work we are concerned with the evaporation and combustion of a thin film

of liquid fuel. A long-wave approximation has been used to simplify the governing
equations to what amounts to boundary layer equations in the gas phase and the
lubrication approximation in the liquid phase. When the burning occurs in a quiescent
ambient gas, the problem further reduces to an evolution equation for the film’s
thickness. What distinguishes this equation from previous studies of thin films is the
additional two parameters that couple the dynamics of the film to the gas-phase



Evaporation and combustion of thin films of liquid fuels 373

x

yf

0 2π/kmax

1
æ

3.9

3.7

Ts

1.27

m

0.038

1.30

0.035

(a)

Tf

1.76

1.170

x
0 2π/kmax

1

4.35

4.25

1.27

0.034

1.30

0.031

(b)

1.138

1.130

Figure 11. Similar to figure 7(a) with q′ = 0.06, but with non-unity oxidizer Lewis numbers:
(a) corresponds to LX = 0.8 and (b) to LX = 1.2.

processes. One of these parameters is the mass of fuel vapour leaving the surface of
the film, which depends on the total heat conducted to the surface from both phases.
The mass loss from the surface is closely related to the mass of fuel consumed at the
diffusion flame which, in turn, depends on the ambient conditions as well as on the
available oxidizer. The second parameter is the temperature at the surface of the film
which depends on the local equilibrium conditions at the liquid–vapour interface.

In deriving the evolution equation (4.5) the viscosity of the liquid was assumed
constant. Indeed, liquid viscosity varies substantially with temperature and, although
it could have been possible to incorporate such a dependence in the analysis, we
have ignored this effect for the sake of simplicity in order to focus our attention on
the burning and its effect on the film’s dynamics. A related study that accounts for
variations in viscosity is that of Reisfeld & Bankoff (1990) who assumed a linear
law, and considered the dynamics of a thin film without evaporation. They concluded
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Figure 12. The growth of the amplitude: (a) variations of LF for LX = 1;
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that the effect of variable viscosity is just to reduce the time scale for the process,
leading to a more rapid rupture of the film. However, the dependence of viscosity
on temperature is more appropriately correlated by an exponential law which, being
nonlinear, may have a more significant influence on the dynamics. Its effect, especially
in the presence of evaporation and combustion, remains to be determined.

When the surface of the film remains planar the evolution equation describes
the time rate of change of the film’s thickness from its initial thickness until its
disappearance. The liquid in this case remains stationary and there is only heat
conduction across the liquid layer. Clearly combustion enhances the film’s evaporation
and disappearance. The results that include variables such as flame position and
temperature, evaporation or burning rate, film thickness history and total evaporation
time, exhibit an explicit dependence on the various physico-chemical parameters.
Spatial non-uniformities in the initial conditions may grow or decay at a rate different
from the rate at which the planar film recedes. We have thus examined the response
to small disturbances, via a linear theory, and to finite-amplitude disturbances by
numerically solving the nonlinear evolution equation. The main mechanism that
drives the film toward or away from a planar state is thermocapillary effects. In the
absence of combustion, or when the heat released is small, the surface of the film
gains heat primarily from the liquid beneath it. Thermocapillary effects in this case
drive the liquid near the surface in such a way as to cause the depression to deepen
further and further. Gravity and capillary forces cannot prevent this deepening and
the film’s thickness continues to decrease locally until it ruptures. When the heat
release by combustion is sufficiently high, the surface of the film gains heat primarily
from the gas phase and thermocapillary forces act to stabilize the film. The role of all
other parameters, such as the temperatures of the ambient and of the bottom of the
film, the latent heat of vaporization, the oxidizer concentration in the ambient, the
Lewis numbers, the level of surface tension and gravity, is to amplify or diminish the
thermocapillary forces.

Our results have direct implications for microgravity combustion studies (King
& Ross 1998), where the stabilizing effect of gravity is absent and surface tension
effects become dominant. One such problem is the ignition and flame spread over
liquid fuel beds (cf. Ross 1994). It is known that the thermocapillary or Marangoni
effect is the driving mechanism for flame spread over fuels that are below the flash
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temperature. For simplicity, the complex calculations of flame spread over liquid
beds assume that the liquid–vapour interface is flat. Our stability results suggest
that such an assumption can possibly be justified in the downstream region where
the heat conducted back from the diffusion flame stabilizes any perturbation of the
surface. However, near the leading edge, since the surface is primarily heated from
below, surface deformation can be amplified and therefore must be accounted for.
Indeed recent experimental work carried out at NASA Glenn shows that the surface
deformation is quite significant and persists even in the trailing portion under the
diffusion flame (H. O. Ross & F. J. Miller 2000, personal communication).

Finally, we note that there is a vast literature on convection resulting from the
non-uniformity of surface tension along the free surface of a liquid layer heated from
below. In such studies it has been recognized since the work of Scriven & Sternling
(1964) that the deformation of the interface has a significant effect on the conditions
for the onset of convection. Recent investigations by Hsieh & Pline (1991) and
Skarda & McCaughan (1999), for example, have also explored the effect of surface
deformation.
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